900字范文,内容丰富有趣,生活中的好帮手!
900字范文 > linux内核个性化 linux内核中的个性时钟nohz与hres

linux内核个性化 linux内核中的个性时钟nohz与hres

时间:2019-08-04 02:54:44

相关推荐

linux内核个性化 linux内核中的个性时钟nohz与hres

设计linux内核的那帮家伙想的可真周到啊,前面说过,linux内核的性格就是激情,只要硬件设计的足够灵活,那么设计者就会尽可能的发挥,不放过任 何可自由发挥的点和死角,而且他们从来不管后果,有时还毅然抛弃硬件的建议,***内核设计linux内核的那帮家伙想的可真周到啊,前面说过,linux内核的性格就是激情,只要硬件设计的足够灵活,那么设计者就会尽可能的发挥,不放过任 何可自由发挥的点和死角,而且他们从来不管后果,有时还毅然抛弃硬件的建议,***内核的nohz可谓是一项创举。时钟中断是计算机系统必须的,就像人必须 有心跳一样,人的心跳是周期的,计算机系统的“心跳”也是周期的,因此,时钟中断每隔固定的时间就会发生。

真的是这样吗?linux内核的设计者认为如果cpu在空闲态,那么就没有必要心跳了,毕竟计算机不是一个自组织系统,能源全靠外界电源供给,而人是一个 自组织实体,因此人必须要有周期的心跳来自己产生能量,计算机的外界电源只要不断,加上时钟可编程,那么非周期心跳甚至心跳停止就是可能的,linux内 核实现了这一点。在2.6.21内核之前,时钟中断是周期的,在那之后引入了新的时钟封装结构clock_event_device和 clocksource,于是可以更加灵活的实现自己设计的个性时钟,这个个性时钟就是nohz方式和hres方式。当然系统初 启的时候时钟中断还是周期的,当timer_interrupt被调用的时候,就会触发timer软中断,然后在接下来的软中断处理中找机会切到nohz 或者hres,具体代码如下:

voidrun_local_timers(void)

{

hrtimer_run_queues();//优先处理高精度时钟队列

raise_softirq(TIMER_SOFTIRQ);//触发软中断,处理函数见下:

softlockup_tick();

}

staticvoidrun_timer_softirq(structsoftirq_action*h)

//软中断处理函数

{

structtvec_base*base=__get_cpu_var(tvec_bases);

hrtimer_run_pending();//这里有机会切换到nohz或者hres

if(time_after_eq(jiffies,base->timer_jiffies))

__run_timers(base);

}

voidhrtimer_run_pending(void)

{

structhrtimer_cpu_base*cpu_base=&__get_cpu_var(hrtimer_bases);

if(hrtimer_hres_active())//如果已经是了,就没有必要切换了,直接返回

return;

if(tick_check_oneshot_change(!hrtimer_is_hres_enabled()))

//这个if判断就是具体切换到hres或者nohz的代码

hrtimer_switch_to_hres();

run_hrtimer_pending(cpu_base);

}

inttick_check_oneshot_change(intallow_nohz)

{

structtick_sched*ts=&__get_cpu_var(tick_cpu_sched);

if(!test_and_clear_bit(0,&ts->check_clocks))

//由此开始的种种判断说明切换所需要到种种条件

return0;

if(ts->nohz_mode!=NOHZ_MODE_INACTIVE)

return0;

if(!timekeeping_valid_for_hres()||!tick_is_oneshot_available())

return0;

if(!allow_nohz)//如果hres是允许的,那么返回1,这样就会切换到hres高精度模式了

return1;

tick_nohz_switch_to_nohz();

//如果没有机会切换到高精度模式,前面种种验证均通过,这里最起码切换到了nohz模式

return0;

}

hres 模式和nohz模式的具体切换由hrtimer_switch_to_hres和tick_nohz_switch_to_nohz负责。不能光一味的跟 踪代码,hres和nohz有何关联呢又分别是什么意义呢?hres实际上也不是周期中断的,而是很精确的确定中断,用最近到时的hrtimer的触发时 间来对时钟编程从而在那个时间到来的时候触发中断,而nohz仅仅说明可以用非周期的时间对时钟编程,对精度没有要求。

在hres中,一切事物都由一个 hrtimer负责,比如原来的节拍调度,统计当前进程的时间等操作直接在timer_interrupt进行,而hres模式下,上述操作专门有一个 hrtimer,当clock_event_device的event_handler执行时(所有操作都被封装进了 clock_event_device的event_handler,而此event_handler在切换到hres或者nohz的时候被赋值),该函 数遍历所有的hrtimer,所有的hrtimer组织成红黑树,将到期的hrtimer链入一个链表,然后在软中断中执行这个链表的hrtimer的回 调函数,对于别的hrtimer则马上执行:所有hrtimer分为两类,一类不能在软中断中执行,属于比较紧急的,另一个可以在软中断中执行,属于不那 么紧急的。对于纯粹的nohz非hres模式,event_handler中还是传统的处理方式,只不过下次中断的时间可以任意编程。这种方式中,时间测量可以达到钠秒的精度。

每当cpu执行cpu_idle的时候,内核就会找机会停掉系统的心跳,然后在适当时机触发心跳,而不是周期的心跳,这个时机是什么呢?如果一切都由 hrtimer负责了,那么这个时机就是找出的最近到期的timer的到期时刻,虽然停掉了周期的时钟中断,但是别的硬件中断是没有停掉的,而硬件中断可能触发一些事件,比如调度,比如发布一个新的timer,因此,每次硬件中断后都要检查***的hrtimer的到期情况和重新调度请求,如果有那么马上停 掉关心跳模式切出idle进程。下面的代码体现了这一点,在每次进入硬件中断处理的时候都要调用irq_enter:

voidirq_enter(void)

{

#ifdefCONFIG_NO_HZ

intcpu=smp_processor_id();

if(idle_cpu(cpu)&&!in_interrupt())

tick_nohz_stop_idle(cpu);

#endif

__irq_enter();

#ifdefCONFIG_NO_HZ

if(idle_cpu(cpu))

tick_nohz_update_jiffies();//更新计时,nohz模式由此来作为触发下一

中断的时机参考。怎么理解呢?看看这个调用条件,只有在cpu处于idle状态时

才更新时间,因为cpu处于idle时可能已经将周期时钟停掉了,为了不遗失时

间信息,必须在中断中补上。

#endif

}

nohz 模式下的中断“几乎”是周期的,nohz的字面意义就是非周期,但是它还是基本周期的,因为它没有任何下一个时钟中断的时间点依据;但是hres却是完全 随机时钟中断的,因为它的event_handler中就是操作红黑树上的hrtimer们,因此,它完全可以将下一个到期的hrtimer的到期时刻作为下一个触发时钟中断的时刻,要知道在hres模式里面,所有的时间相关的操作比如计时,节拍调度等都是由hrtimer负责的,如果要选择下一次触发时 钟中断的时机就不能在某一个hrtimer的处理函数里面仲裁了,而必须在全局的处理所有的hrtimer的event_handler函数里面仲裁,这 就是一切。我们看一下cpu_idle:

voidcpu_idle(void)

{

intcpu=smp_processor_id();

current_thread_info()->status|=TS_POLLING;

/*endlessidleloopwithnopriorityatall*/

while(1){

tick_nohz_stop_sched_tick(1);

while(!need_resched()){

check_pgt_cache();

rmb();

if(rcu_pending(cpu))

rcu_check_callbacks(cpu,0);

if(cpu_is_offline(cpu))

play_dead();

local_irq_disable();

__get_cpu_var(irq_stat).idle_timestamp=jiffies;

/*Don'ttraceirqsoffforidle*/

stop_critical_timings();

pm_idle();

start_critical_timings();

}

tick_nohz_restart_sched_tick();

preempt_enable_no_resched();

schedule();

preempt_disable();

}

}

其中tick_nohz_stop_sched_tick里面调用了next_jiffies = get_next_timer_interrupt(last_jiffies);这一句,此句的意思就是找出下一个最近的timer或者hrtimer 用来将其到期时间作为下一个时钟中断的时间。在tick_nohz_stop_sched_tick中当然要检查重新调度标志,如果置位那么马上返回不再 nohz了,其实在每个硬件中断后的irq_exit里都要调用tick_nohz_stop_sched_tick函数用来在可能的情况下重新对时钟编 程。

看来linux的设计者考虑的就是周到,这又是一个疯狂的使用并且灵活的发挥硬件作用的例子,linux本身不区分中断优先级在某种意义上纵容了nohz 和hres的出现和发展,如果有一天linux内核变得规则了,有原则了,像windows一样了或者说向unix靠齐了,那么linux的时代也就过去 了,它的性格也就磨平了。

附加:调度相关的hrtimer内核有两个地方调用了调度类的task_tick函数,就是在时钟中断(不考虑nohz和hres)和每运行队列的hrtimer的hrtick处理函数中:

voidscheduler_tick(void)

{

intcpu=smp_processor_id();

structrq*rq=cpu_rq(cpu);

structtask_struct*curr=rq->curr;

sched_clock_tick();

spin_lock(&rq->lock);

update_rq_clock(rq);

update_cpu_load(rq);

curr->sched_class->task_tick(rq,curr,0);//注意参数

spin_unlock(&rq->lock);

#ifdefCONFIG_SMP

rq->idle_at_tick=idle_cpu(cpu);

trigger_load_balance(rq,cpu);

#endif

}

staticenumhrtimer_restarthrtick(structhrtimer*timer)

{

structrq*rq=container_of(timer,structrq,hrtick_timer);

WARN_ON_ONCE(cpu_of(rq)!=smp_processor_id());

spin_lock(&rq->lock);

update_rq_clock(rq);

rq->curr->sched_class->task_tick(rq,rq->curr,1);//注意参数

spin_unlock(&rq->lock);

returnHRTIMER_NORESTART;

}

以fair调度类为例,其task_tick为task_tick_fair,其中按调度组向上调

用了entity_tick:

staticvoidentity_tick(structcfs_rq*cfs_rq,structsched_

entity*curr,intqueued)

{

update_curr(cfs_rq);

#ifdefCONFIG_SCHED_HRTICK

if(queued){

resched_task(rq_of(cfs_rq)->curr);//在hrtimer相关的task_tick的

参数为1正是这里的情况,强行调度然后返回,这么猛干嘛啊?要理解这里的方式就

要理解每队列hrtimer的作用,此hrtimer专门负责记录一个调度时机,该时机

必须要调度,为何一定要调度呢?因为在计算这个时机并设置hrtimer的时候要先

计算当前进程还能运行多久,在过了这个时间后hrtimer到期,强制调度,也就

是说只要到了hrtick,那就意味着一次调度马上发生

return;

}

if(!sched_feat(DOUBLE_TICK)&&

//如果上述的hrtimer正在计时,那么就用hrtimer的方式,不再向下进行了。

hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))

return;

#endif

if(cfs_rq->nr_running>1||!sched_feat(WAKEUP_PREEMPT))

//否则到此处进行常规的更新,检查,调度。

check_preempt_tick(cfs_rq,curr);

}

为 何附上这么一段呢?因为每队列的hrtimer要调用task_tick,而如果event_handler中还是要走到task_tick,两个地方做 一件事岂不多余,实际上只有一个地方进行了真正的task_tick,从上面的代码就可以看出来,如果是常规的task_tick进入,那么检查到if (queued) {或者if (!sched_feat(DOUBLE_TICK) &&...的时候如果有每队列hrtimer活动的话,就直接返回了,不会处理下去了,因此可以看出并没有重复。看看怎么设置每队列的 hrtimer吧:

staticvoidhrtick_start_fair(structrq*rq,

structtask_struct*p)

{

structsched_entity*se=&p->se;

structcfs_rq*cfs_rq=cfs_rq_of(se);

WARN_ON(task_rq(p)!=rq);

if(hrtick_enabled(rq)&&cfs_rq->nr_running>1){

u64slice=sched_slice(cfs_rq,se);

//由weight计算出这个进程应该运行多久

u64ran=se->sum_exec_runtime-se->prev_sum_exec_runtime;

//计算这个进程实际运行了多久

s64delta=slice-ran;//计算二者之差

if(delta<0){

if(rq->curr==p)//若运行超时那么马上调度

resched_task(p);

return;

}

if(rq->curr!=p)

delta=max_t(s64,10000LL,delta);

hrtick_start(rq,delta);//否则设置定时期hrtimer

}

}

【编辑推荐】

【责任编辑:张浩 TEL:(010)68476606】

点赞 0

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。