900字范文,内容丰富有趣,生活中的好帮手!
900字范文 > 最全最详细-线性规划(最小二乘 正交回归 梯度下降 仿真)

最全最详细-线性规划(最小二乘 正交回归 梯度下降 仿真)

时间:2019-03-09 09:40:34

相关推荐

最全最详细-线性规划(最小二乘 正交回归 梯度下降 仿真)

文章目录

1. 问题描述2. 问题分析3. 解析解法3.1 一般最小二乘法3.1.1目标函数3.1.2 求解推导3.1.3 几何意义3.1.4 缺点3.1.4.1 对异常值很敏感3.1.4.2 没有考虑自变量的误差3.1.4.3 存在不可求解的情况 3.2 正交回归3.2.1 目标函数3.2.2 求解推导3.2.3 结果总结3.2.4 几何意义 4 数值解法4.1 梯度下降法4.1.1 迭代公式4.1.2 算法步骤4.1.3 收敛性证明 5 仿真对比5.1 原始数据采集5.2 仿真结果对比与分析5.2.1 仿真结果对比5.2.2 仿真结果分析5.2.3 拟合直线图对比 5.3 曲线采点仿真 6 向高维推广6.1 3维空间中的平面拟合6.2 3维空间中的直线拟合

1. 问题描述

在二维平面上,给定若干个点,求一条直线能够很好的拟合这些点。如图所示。

为什么这个问题很重要?

这是一个非常重要而且很常见的问题;是控制、滤波、优化、视觉、机器学习等领域的一个基础问题;涉及到很多必须的数学知识,为将来研究的研究打下基础;这是一个很好的由浅入深的问题。

本文的仿真代码请看我附带的资源。

2. 问题分析

这是一个线性拟合或者线性回归问题,目的是在二维平面上,找到一条直线来拟合给出的点。

线性拟合有很多方法,每个方法都有自己的目标函数,不同的情况下应该要使用相应的目标函数和相应的方法。每种方法都有其自己的适用范围和意义,每种方法也都有自己的优缺点。

3. 解析解法

这个问题的复杂程度还不是很大,所以能够通过数学的方法求出解析解。

3.1 一般最小二乘法

一般最小二乘是最常用的线性拟合的方法。

一般最小二乘法的目的是找到因变量 y y y与自变量 x x x之间的函数关系 y = f ( x ) y=f(x) y=f(x)。对于本文讨论的为题,可以将点的横坐标看做自变量,将纵坐标看做因变量。然后使用一般最小二乘法找到自变量和因变量之间的函数关系,由这个函数关系可以确定一条直线,这就是拟合出来的直线。

3.1.1目标函数

假设给出的若干点的坐标为: ( x 1 , y 1 ) , ( x 2 , y 2 ) ⋯ ( x n , y n ) (x_1,y_1),(x_2,y_2) \cdots (x_n,y_n) (x1​,y1​),(x2​,y2​)⋯(xn​,yn​)。定义纵坐标 y y y的误差 ϵ i \epsilon_i ϵi​为真值与观测值之差,定义 y y y的残差 ϵ ^ i \hat{\epsilon}_i ϵ^i​为估计值与观测值的差,公式如下:

ϵ i = y i − y i ⋆ \epsilon_i=y_i-y_i^{\star} ϵi​=yi​−yi⋆​

ϵ ^ i = y i − y ^ i \hat{\epsilon}_i=y_i-\hat{y}_i ϵ^i​=yi​−y^​i​

一般最小二乘法的目的是使拟合误差(残差和)最小,也就是 min ⁡ ∑ ϵ ^ i \min \sum \hat{\epsilon}_i min∑ϵ^i​ ,所以目标函数的形式如下:

J 1 = 1 2 ∑ i = 1 n ϵ ^ i 2 = 1 2 ∑ i = 1 n ( y ^ i − y i ) 2 = 1 2 ( y ^ − y ) T ( y ^ − y ) \bold{J}_1=\dfrac{1}{2}\sum_{i=1}^{n}\hat{\epsilon}_i^2 =\dfrac{1}{2}\sum_{i=1}^{n}(\hat{y}_i-y_i)^2 =\dfrac{1}{2}(\hat{\boldsymbol{y}}-\boldsymbol{y})^T(\hat{\boldsymbol{y}}-\boldsymbol{y}) J1​=21​i=1∑n​ϵ^i2​=21​i=1∑n​(y^​i​−yi​)2=21​(y^​−y)T(y^​−y)

其中 y = [ y 1 , y 2 , ⋯ , y n ] T \boldsymbol{y}=[y_1,y_2,\cdots,y_n]^T y=[y1​,y2​,⋯,yn​]T,这里添加的 1 2 \dfrac{1}{2} 21​只是为了方便计算。

所以最小二乘法就是找到一组直线的参数,使得目标函数最小。

3.1.2 求解推导

直线方程使用斜截式直线方程: y = k x + c y=kx+c y=kx+c,所以要求解的直线参数为斜率 k k k和截距 c c c。所以有: y i ^ = k ^ x i + c ^ \hat{y_i}=\hat{k}x_i+\hat{c} yi​^​=k^xi​+c^。写成矩阵形式为:

y ^ = X θ \hat{\bold{y}}=\boldsymbol{X}\boldsymbol{\theta} y^​=Xθ

其中, X = [ x 1 1 x 2 1 ⋮ ⋮ x n 1 ] \boldsymbol{X}=\left[\begin{matrix}x_1 & 1 \\x_2 & 1 \\\vdots & \vdots \\x_n & 1 \end{matrix}\right] X=⎣⎢⎢⎢⎡​x1​x2​⋮xn​​11⋮1​⎦⎥⎥⎥⎤​, θ = [ k ^ c ^ ] \boldsymbol{\theta}=\left[\begin{matrix}\hat{k} \\\hat{c}\end{matrix}\right] θ=[k^c^​],将其带入目标函数 J 1 \boldsymbol{J}_1 J1​得:

J 1 = 1 2 ( X θ − y ) T ( X θ − y ) \boldsymbol{J}_1=\dfrac{1}{2}(\boldsymbol{X}\boldsymbol{\theta}-\boldsymbol{y})^T(\boldsymbol{X}\boldsymbol{\theta}-\boldsymbol{y}) J1​=21​(Xθ−y)T(Xθ−y)

目标函数对 θ \theta θ求导,并令其等于零,得:

∂ ∂ θ J 1 = X T ( X θ − y ) = 0 \dfrac{\partial}{\partial\boldsymbol{\theta}} \boldsymbol{J}_1 = \boldsymbol{X}^T (\boldsymbol{X}\boldsymbol{\theta} -\boldsymbol{y})=0 ∂θ∂​J1​=XT(Xθ−y)=0

解得:

θ = ( X T X ) − 1 X T y \boldsymbol{\theta}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} θ=(XTX)−1XTy

即:

[ k ^ c ^ ] = ( X T X ) − 1 X T y \left[ \begin{matrix} \hat{k} \\ \hat{c} \end{matrix} \right]=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} [k^c^​]=(XTX)−1XTy

3.1.3 几何意义

从目标函数上看,一般最小二乘法的直观上的理解是:在二维平面上找到一条直线,使得每个点到直线的竖直距离之和最小。也就是说,一般最小二乘优化的是竖直距离,即纵坐标 y y y的误差。

一般最小二成误差描述

上图中红色线段即为每个点的竖直误差,一般最小二乘法就是找到这样一条直线,使得红色线段的和最小。

3.1.4 缺点

3.1.4.1 对异常值很敏感

一般最小二乘法对异常值很敏感,只要一个奇怪的异常值就可能会改变最后的结果。

从其代数解法的最后结果来看,一般最小二乘法仅使用了点的均值信息和方差信息,所以仅对存在普通噪声的情况下适用,当存在异常值时,一般最小二乘法就无能为力了,此时需要其他的方法来解决。

3.1.4.2 没有考虑自变量的误差

一般最小二乘法仅考虑了因变量 y y y存在误差的情况,没有考虑自变量 x x x的误差,所以其应用条件有一定的限制。只有当自变量不存在偏差,或者自变量的偏差在一定范围内可以忽略不计时,才比较适用。当自变量和因变量的测量都存在偏差时,一般最小二乘法就不太合适了。

对于本文所讨论的问题:用一条直线拟合平面上的若干点。题目并没有提到这些点的来源,当这些点的横坐标的测量比较精确时,可以使用考虑使用一般最小二乘法。但是当这些点的横纵坐标都存在误差,而且都不能忽略时,一般最小二乘法就不太适用了,这时就必须考虑其他的方法了。

3.1.4.3 存在不可求解的情况

当要拟合的直线是垂直或接近垂直于 x x x轴的时候,就无法求解了。垂直于 x x x轴的直线,斜率无穷大,无法用斜截式直线方程表示。

从可解性的角度考虑,当直线垂直于 x x x轴的时候,矩阵 X T X \boldsymbol{X}^T\boldsymbol{X} XTX是不可逆的,所以无法求出其最小二乘解。当直线接近垂直于 x x x轴的时候,矩阵 X T X \boldsymbol{X}^T\boldsymbol{X} XTX接近奇异,如果直接求逆,也会导致很大的偏差。

所以当拟合的直线垂直或者接近垂直于 x x x轴的时候,是不能用一般最小二乘法进行直线拟合的。

3.2 正交回归

一般最小二乘仅考虑了因变量 y y y存在误差的情况,但是很多情况下,原始点的横纵坐标都会有误差存在。正交方法能够同时考虑自变量 x x x和因变量 y y y的误差。

3.2.1 目标函数

直线方程用点法式的形式表示,定义拟合直线经过的点坐标为 p 0 = ( x 0 , y 0 ) p_0=(x_0,y_0) p0​=(x0​,y0​),直线的法向量为 v \boldsymbol{v} v,这里我们假设直线的法向量为单位向量。所以可以使用两个向量 ( p 0 , v ) (p_0,\boldsymbol{v}) (p0​,v)来表示一条直线,而且是二维平面上的任意直线。

正交回归的目的是点到直线的距离之和最小,也就是点到直线上投影点的距离最短。点到投影点的距离可以用向量 p i = ( p i − p 0 ) \boldsymbol{p}_i=(p_i-p_0) pi​=(pi​−p0​)向直线法向量 v \boldsymbol{v} v方向上的投影的模长来表示。

向 v \boldsymbol{v} v投影的投影矩阵为 v v T \boldsymbol{v}\boldsymbol{v}^T vvT。

所以目标函数可以表示为:

J 2 = 1 2 n ∑ ∣ ∣ v v T ( p i − p 0 ) ∣ ∣ 2 \boldsymbol{J}_2=\dfrac{1}{2n}\sum ||\boldsymbol{v}\boldsymbol{v}^T(p_i-p_0)||^2 J2​=2n1​∑∣∣vvT(pi​−p0​)∣∣2

这里的 1 2 n \dfrac{1}{2n} 2n1​是为了计算方便。

也可以化简为几种不同的形式:

J 2 = 1 2 n ∑ v T ( p i − p 0 ) ( p i − p 0 ) T v J 2 = 1 2 n ∑ [ v T ( p i − p 0 ) ] 2 \begin{aligned} \boldsymbol{J}_2&=\dfrac{1}{2n}\sum\boldsymbol{v}^T(p_i-p_0) (p_i-p_0)^T\boldsymbol{v}\\ \boldsymbol{J}_2&=\dfrac{1}{2n}\sum [ \boldsymbol{v}^T (p_i-p_0)]^2 \end{aligned} J2​J2​​=2n1​∑vT(pi​−p0​)(pi​−p0​)Tv=2n1​∑[vT(pi​−p0​)]2​

3.2.2 求解推导

目标函数 J 2 \boldsymbol{J}_2 J2​对 p 0 p_0 p0​求导,得:

d J 2 d p 0 = d p 0 { 1 2 n ∑ [ v T ( p i − p 0 ) ] 2 } = − v T ( ∑ p i n − p 0 ) v \dfrac{d\boldsymbol{J}_2}{d p_0}=\dfrac{d}{p_0}\{\dfrac{1}{2n}\sum [\boldsymbol{v}^T (p_i-p_0)]^2\}=-\boldsymbol{v}^T(\dfrac{\sum p_i}{n}-p_0)\boldsymbol{v} dp0​dJ2​​=p0​d​{2n1​∑[vT(pi​−p0​)]2}=−vT(n∑pi​​−p0​)v

令 d J 2 d p 0 = 0 \dfrac{d\boldsymbol{J}_2}{d p_0}=\boldsymbol{0} dp0​dJ2​​=0,得:

v T ( p ˉ − p 0 ) v = 0 \boldsymbol{v}^T(\bar{p}-p_0)\boldsymbol{v}=\boldsymbol{0} vT(pˉ​−p0​)v=0

其中 p ˉ \bar{p} pˉ​为所有拟合点的质心。

因为法向量不是零向量,所以可以得出:

v T ( p ˉ − p 0 ) = 0 \boldsymbol{v}^T(\bar{p}-p_0)=0 vT(pˉ​−p0​)=0

所以, p ˉ \bar{p} pˉ​一定是直线上的一点,所以不妨设 p 0 = p ˉ p_0=\bar{p} p0​=pˉ​。

此时目标函数可以化简:

J 2 = 1 2 n ∑ v T ( p i − p ˉ ) ( p i − p ˉ ) T v = 1 2 n v T S v \boldsymbol{J}_2=\dfrac{1}{2n}\sum\boldsymbol{v}^T (p_i-\bar{p})(p_i-\bar{p})^T\boldsymbol{v} =\dfrac{1}{2n}\boldsymbol{v}^T\boldsymbol{S}\boldsymbol{v} J2​=2n1​∑vT(pi​−pˉ​)(pi​−pˉ​)Tv=2n1​vTSv

其中 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi​−pˉ​)(pi​−pˉ​)T

这是一个二次型,所以当 v \boldsymbol{v} v取矩阵 S \boldsymbol{S} S最小特征值对应的特征向量时,目标函数的值最小。

3.2.3 结果总结

p 0 p_0 p0​为拟合点的质心坐标。

v \boldsymbol{v} v应该取矩阵 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi​−pˉ​)(pi​−pˉ​)T最小特征值对应的特征向量。

3.2.4 几何意义

从正交回归的直观上的理解是:在二维平面上找到一条直线,使得每个点到直线的垂直距离之和最小。也就是说,正交回归优化的是垂直距离。

正交回归误差描述

上图中红色线段即为每个点的竖直误差,正交回归就是找到这样一条直线,使得红色线段的和最小。

4 数值解法

前面两种方法都是解析法,能够准确地求出具体值,但是如果矩阵的规模很大,用计算机求解就有些得不偿失(尤其是矩阵求逆),甚至最后的结果是错误的。

4.1 梯度下降法

梯度下降法是一个很好的方法,用计算机去迭代近似,能够达到很快的收敛速度,同时也能保证比较高的精确度。

梯度下降法的基本思想可以类比为一个下山的过程,每次循环都已当前位置为基准,找到当前这个位置最陡峭的方向,然后朝着这个方向往下走,最终就会抵达山底。对于算法来说,一个关键的点是如何找到最陡峭的方向。而且每次循环的频率也是一个关键点的参数,如果频率太高,则会收敛太慢,如果频率太低,则可能会偏离方向。

梯度下降法相当于一种迭代算法,先随机给定一个解,然后循环迭代,每次都以目标函数下降最快的

4.1.1 迭代公式

将梯度下降的思想应用到一般最小二乘中。将一般最小二乘的目标函数作为梯度下降的损失函数,将直线的点法式方程中的参数作为梯度下降的优化量。

这里为了方便,对损失函数做一个简单的变换,对损失函数除以 n n n:

J 1 = 1 2 n ∑ ( k x i + c − y i ) 2 \boldsymbol{J}_1=\dfrac{1}{2n}\sum(kx_i+c-y_i)^2 J1​=2n1​∑(kxi​+c−yi​)2

则迭代公式为:

θ n e w = θ o l d − α d d θ J 3 ( θ ) \boldsymbol{\theta}_{new}=\boldsymbol{\theta}_{old}-\alpha\dfrac{d}{d \boldsymbol{\theta}}\boldsymbol{J_3}(\boldsymbol{\theta}) θnew​=θold​−αdθd​J3​(θ)

其中 α \alpha α为步长。

4.1.2 算法步骤

线性拟合梯度下降法的迭代步骤如下:

Algorithm 1: 最小二乘梯度下降算法

输入:

​ 数据点: ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x n , y n ) (x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n) (x1​,y1​),(x2​,y2​),⋯,(xn​,yn​);

输出:

​ 直线参数:斜率 k k k和截距 c c c;

初始化直线参数,令 θ = [ k c ] = [ 1 1 ] \boldsymbol{\theta}= \left[ \begin{matrix} k \\ c \end{matrix} \right]= \left[ \begin{matrix} 1 \\ 1 \end{matrix}\right] θ=[kc​]=[11​];初始化步长,令 α = 0.1 \alpha=0.1 α=0.1;计算梯度 Δ = d d θ J 1 ( θ ) \Delta=\dfrac{d}{d\boldsymbol{\theta}}\boldsymbol{J}_1(\boldsymbol{\theta}) Δ=dθd​J1​(θ);whileΔ > 1 0 − 5 \Delta > 10^{-5} Δ>10−5do更新直线参数 θ ← θ − α Δ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \Delta θ←θ−αΔ;更新梯度 Δ = d d θ J 1 ( θ ) \Delta=\dfrac{d}{d\boldsymbol{\theta}}\boldsymbol{J}_1(\boldsymbol{\theta}) Δ=dθd​J1​(θ);end

4.1.3 收敛性证明

目标函数的梯度计算为:

d J 1 ( θ ) d θ = A T ( A θ − y ) \dfrac{d \boldsymbol{J}_1(\boldsymbol{\theta})}{d\boldsymbol{\theta}}=\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{\theta}-\boldsymbol{y}) dθdJ1​(θ)​=AT(Aθ−y)

所以迭代公式可以写成:

θ n e w = θ o l d − α A T ( A θ − y ) \boldsymbol{\theta}_{new}=\boldsymbol{\theta}_{old}-\alpha\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{\theta}-\boldsymbol{y}) θnew​=θold​−αAT(Aθ−y)

定义收敛值为 θ ∗ \boldsymbol{\theta}^* θ∗,通过解析解法,我们知道:

θ ∗ = ( A T A ) − 1 A T y \boldsymbol{\theta}^*=(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T\boldsymbol{y} θ∗=(ATA)−1ATy

定义第 k k k步的结果与收敛值的差为:

e k = θ k − θ ∗ \boldsymbol{e}_k=\boldsymbol{\theta}_k-\boldsymbol{\theta}^* ek​=θk​−θ∗

将 θ k = e k + θ ∗ \boldsymbol{\theta}_k=\boldsymbol{e}_k+\boldsymbol{\theta}^* θk​=ek​+θ∗和 θ k + 1 = e k + 1 + θ ∗ \boldsymbol{\theta}_{k+1}=\boldsymbol{e}_{k+1}+\boldsymbol{\theta}^* θk+1​=ek+1​+θ∗带入迭代公式,得:

e k + 1 + θ ∗ = e k + θ ∗ − α A T ( A e k + A θ ∗ − y ) = e k + θ − α A T A e k \begin{aligned} \boldsymbol{e}_{k+1}+\boldsymbol{\theta}^*&=\boldsymbol{e}_k+\boldsymbol{\theta}^*-\alpha\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{e}_k+\boldsymbol{A}\theta^*-\boldsymbol{y}) \\ &=\boldsymbol{e}_k+\boldsymbol{\theta}-\alpha\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{e}_k \end{aligned} ek+1​+θ∗​=ek​+θ∗−αAT(Aek​+Aθ∗−y)=ek​+θ−αATAek​​

因此,

e k + 1 = ( I − α A T A ) e k \boldsymbol{e}_{k+1}=(\boldsymbol{I}-\alpha\boldsymbol{A}^T\boldsymbol{A})\boldsymbol{e}_k ek+1​=(I−αATA)ek​

所以,当 α \alpha α足够小,使得 I − α A T A \boldsymbol{I}-\alpha\boldsymbol{A}^T\boldsymbol{A} I−αATA小于1的时候,结果是收敛的。

5 仿真对比

因为不同的算法不同的目标函数适用不同的情况,所以根据目标函数的不同,生成两种数据集。

5.1 原始数据采集

使用 − 2 x + y + 3 = 0 -2x+y+3=0 −2x+y+3=0当做原始直线方程,在直线上随机采取1000个点,然后对这些点的横纵坐标加正态分布的噪声。在这里,我们分两种情况来采集数据集,第一种情况只对纵坐标加噪声,第二种情况对横纵坐标同时加噪声。

采集后的数据点集如下图所示:

图,加噪声后的点和原始直线

上图中,原始直线用蓝色的直线表示,添加噪声后的点用黄色的点表示。明显可以看出,同时对 x x x和 y y y添加噪声后的点要相对稀疏一些。

5.2 仿真结果对比与分析

用截距式直线方程来表示,原直线方程为: y = 2 x − 3 y=2x-3 y=2x−3。所以原直线方程的参数为:

k = 2 c = − 3 \begin{aligned} k&=2\\ c&=-3 \end{aligned} kc​=2=−3​

5.2.1 仿真结果对比

首先列出三种算法求出的直线方程的参数,如下表所示:

表1:三种算法的仿真结果表2:三种算法的结果误差

5.2.2 仿真结果分析

从上面的结果可以得出如下结论:

一般最小二乘法更适用于只有 y y y有噪声的情况;正交回归更适用于 x x x和 y y y同时包含噪声的情况;梯度下降法,因为其损失函数和一般最小二乘法相同,所以结果也是一致的。

5.2.3 拟合直线图对比

三种方法的拟合直线图如下所示:

图,一般最小二乘法的仿真结果图,正交回归仿真结果图,梯度下降法仿真结果

上图中,原始直线用蓝色直线表示,原始拟合点用黄色的点表示,拟合后的直线用绿色的直线表示。

5.3 曲线采点仿真

使用 y = ( x + 5 ) 2 y=(x+5)^2 y=(x+5)2作为原始曲线,随机采点,并对 x x x和 y y y都加噪声。分别使用最小二乘法和正交回归进行拟合仿真,结果如下:

图,用直线拟合曲线上的点

从结果看,两种算法的最后结果差别较大。

6 向高维推广

6.1 3维空间中的平面拟合

3维空间中的平面同样可以用点法式来进行表示。我们用 ( p 0 , v ) (p_0,\boldsymbol{v}) (p0​,v)这样的组合来表示直线,其中 p 0 p_0 p0​表示平面上的点, v \boldsymbol{v} v表示平面的法向量。

则目标函数可以写成:

J 4 = 1 2 n ∑ ∣ ∣ v v T ( p i − p 0 ) ∣ ∣ 2 \boldsymbol{J}_4=\dfrac{1}{2n}\sum ||\boldsymbol{v}\boldsymbol{v}^T(p_i-p_0)||^2 J4​=2n1​∑∣∣vvT(pi​−p0​)∣∣2

这个跟2维直线拟合是一样的,只是向量和矩阵都多了一维。

直接写出结果:

p 0 p_0 p0​为拟合点的质心点坐标; v \boldsymbol{v} v应该取矩阵 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi​−pˉ​)(pi​−pˉ​)T最小特征值对应的特征向量。

6.2 3维空间中的直线拟合

3维空间中的直线可以用点向式来表示。用 ( p 0 , v ) (p_0,\boldsymbol{v}) (p0​,v)这样的组合来表示3维空间中的任意一条直线,其中 p 0 p_0 p0​表示直线上的一点, v \boldsymbol{v} v为直线的方向向量,因为只表示方向,其大小没有关系,所以直接定义其为单位向量。则,点到直线的投影距离为:

d i = ∣ ∣ ( I − v v T ) ( p i − p 0 ) ∣ ∣ d_i=||(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T)(p_i-p_0)|| di​=∣∣(I−vvT)(pi​−p0​)∣∣

目标函数可以写成:

J 5 = 1 2 n ∑ ∣ ∣ ( I − v v T ) ( p i − p 0 ) ∣ ∣ 2 \boldsymbol{J}_5=\dfrac{1}{2n}\sum||(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T)(p_i-p_0)||^2 J5​=2n1​∑∣∣(I−vvT)(pi​−p0​)∣∣2

也可以化简为多种形式:

J 5 = 1 2 n ∑ [ ( p i − p 0 ) T ( I − v v T ) ( p i − p 0 ) ] J 5 = 1 2 n ∑ [ ( p i − p 0 ) T ( p i − p 0 ) − v T ( p i − p 0 ) ( p i − p 0 ) T v ] \begin{aligned} \boldsymbol{J}_5&=\dfrac{1}{2n}\sum [(p_i-p_0)^T(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T) (p_i-p_0)]\\ \boldsymbol{J}_5&=\dfrac{1}{2n}\sum [(p_i-p_0)^T(p_i-p_0)-\boldsymbol{v}^T(p_i-p_0)(p_i-p_0)^T\boldsymbol{v}] \end{aligned} J5​J5​​=2n1​∑[(pi​−p0​)T(I−vvT)(pi​−p0​)]=2n1​∑[(pi​−p0​)T(pi​−p0​)−vT(pi​−p0​)(pi​−p0​)Tv]​

推导过程:

目标函数对 p 0 p_0 p0​求导得:

∂ J 5 ∂ p 0 = − 1 n ∑ ( I − v v T ) ( p i − p 0 ) \dfrac{\partial \boldsymbol{J}_5}{\partial p_0}=-\dfrac{1}{n}\sum(\boldsymbol{I}-\boldsymbol{v}\boldsymbol{v}^T)(p_i-p_0) ∂p0​∂J5​​=−n1​∑(I−vvT)(pi​−p0​)

令 ∂ J 5 ∂ p 0 = 0 \dfrac{\partial \boldsymbol{J}_5}{\partial p_0}=\boldsymbol{0} ∂p0​∂J5​​=0得:

p 0 = p ˉ p_0=\bar{p} p0​=pˉ​

其中 p ˉ \bar{p} pˉ​为拟合点的质心。

此时,目标函数重写为:

J 5 = 1 2 n ∑ ( p i − p ˉ ) T ( p i − p ˉ ) − 1 2 n ∑ v T ( p i − p ˉ ) ( p i − p ˉ ) T v \boldsymbol{J}_5=\dfrac{1}{2n}\sum(p_i-\bar{p})^T(p_i-\bar{p})-\dfrac{1}{2n}\sum\boldsymbol{v}^T(p_i-\bar{p})(p_i-\bar{p})^T\boldsymbol{v} J5​=2n1​∑(pi​−pˉ​)T(pi​−pˉ​)−2n1​∑vT(pi​−pˉ​)(pi​−pˉ​)Tv

所以为了求 J 5 \boldsymbol{J}_5 J5​的最小值,应该求 J Q = 1 2 n ∑ v T ( p i − p ˉ ) ( p i − p ˉ ) T v \boldsymbol{J}_Q=\dfrac{1}{2n}\sum\boldsymbol{v}^T(p_i-\bar{p})(p_i-\bar{p})^T\boldsymbol{v} JQ​=2n1​∑vT(pi​−pˉ​)(pi​−pˉ​)Tv的最大值。

所以 v \boldsymbol{v} v应该取矩阵 S = ∑ ( p i − p ˉ ) ( p i − p ˉ ) T \boldsymbol{S}=\sum(p_i-\bar{p})(p_i-\bar{p})^T S=∑(pi​−pˉ​)(pi​−pˉ​)T最大特征值对应的特征向量。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。